Computer Programming (b) - E1124 °
(Spring 2021-2022)

L_ecture 1

Introduction - Pointers and References
INSTRUCTOR

Dr / Ayman Soliman

> Contents

1) Course Contents.

2) Grading System & distribution.
3) Course Information.

4) Course Policy.

5) Objectives.

6) Pointers and References.

Dr/ Ayman Soliman

ﬁ Course Contents.

» Introduction

» Pointers and References.

» Files manipulation

» Searching and sorting algorithms

» Object-oriented design

» Encapsulation and information hiding

» Problem solving with objects.

» Project.

.

22/2/2022 Dr/ Ayman Soliman

ﬂGrading System & distribution.

Total score
(100)
Project Reports Midterm exam Final exam
(10) (10) (10) (10) (20) (40)

22/2/2022 Dr/ Ayman Soliman @

3) Course Information.
L_ectures: Tuesday, (9:00 - 9:45 AM)
Office Hours: Saturday, Tuesday, Thursday.
Prerequisite: E1123

References:

»C++ Programming: From Problem Analysis to Program Design, Fifth Edition D.S. Malik
» Object-Oriented Programming Using C++, Fourth Edition Joyce Farrell
»Www.learncpp.com

Instructor:

Dr. Ayman Soliman

Ayman.mohamed0l@bhit.bu.edu.eq

TAS:

Eng. Enas Mohamed Eng. Ahmed Ragab
Eng. Rehab Ibrahim Eng. Sameh Gamal
Eng. Nora Ahmed

Dr/ Ayman Soliman

http://www.learncpp.com/
mailto:Ayman.mohamed01@bhit.bu.edu.eg

4) Course Policy.

» Any forms of cheating or plagiarism will result in a
Zero grade for the required task, report or exam (No
discussion nor excuses).

» Students are expected to respect Instructors, TAs, and
their colleagues.

» Be on time and cell phones should be silent or off
during the lecture.

» Your grades Is based on merit only nothing else.

.

22/2/2022 Dr/ Ayman Soliman

ﬁ Objectives

» Analyze a problem and construct a solution using C++ programming language.
» Explain how an existing C++ program works, discovering errors and fix them.
» Critique a C++ program and describe ways to improve it.

» Follow up intermediate and advanced level of C++ programming language.

B :

22/2/2022 Dr/ Ayman Soliman

Pointers and References

Dr/ Ayman Soliman

ﬁOutlines

N

>

v VvV VvV VvV V VY

Objectives

Introduction

Pointer Variables

Initialize and assign a value to a pointer
Dereferencing Operator (*)

Address of Operator (&)

Pointers and Arrays

22/2/2022

Dr/ Ayman Soliman

ﬁ Objectives

» Learn about the pointer data type and pointer variables

» Explore how to declare and manipulate pointer variables

» Learn about the address of operator and the dereferencing operator
» Learn about pointer Arithmetic

» Pointers and its relations with Arrays

.

~

22/2/2022 Dr/ Ayman Soliman

> Introduction

» Variable is a name for a piece of memory that holds a value.

» A memory address Is automatically assigned to the variable, and any value we

assign to the variable is stored in this memory address.

» Example:-
#include <iostream.h> address — value
int main()
{
int a=5; &a a

cout<<a<<endl; // print the content of a variable
cout<<&a<<endl; // print the address of a variable B} "C:\Users\Dr Ayman Soliman’
return O; =

Ax28f 44

Press any key to conti

Dr/ Ayman Soliman

> Pointer Variables

» Pointer variable: content is a memory address

» Declaring Pointer Variables: Syntax

» Examples:

> Int *p;
» char *ch;

» Int* fun_1(); // returning a pointer from a function

ﬁlnitialize and assign a value to a pointer \

> Initialize pointer with address > Not allowed initialization
of variable value int *ptr = 5;

Int value = 10; or

int *ptr = & value: double *ptr = 0x006ffed4,

> assigning pointer or

int x = 10: double value = 10;

_ Int *ptr = & value;

Int *ptr ;

@L X //data types must be same /

22/2/2022 Dr/ Ayman Soliman @

» Pointer Variables (cont.)

» These statements are equivalent
int *p;
int* p;
int * p;
» The character * can appear anywhere between type name and variable name

» In the statement
int* p, qg;
only p is the pointer variable, not g; here q is an int variable

» The following statement declares both p and g to be pointer variables of the type int
int *p, *q;

22/2/2022 Dr/ Ayman Soliman 14

» Dereferencing Operator (*)
» C++ uses * as the binary multiplication operator and as a unary operator

» When used as a unary operator, *
v' Called dereferencing operator or indirection operator

v The dereference operator (*) used to access the value at a particular address:

Int X=25;
Int *p;
P=&x; //storethe address of x inp

» The following statement prints the value stored in the memory space pointed to by p,

which is the value of x. Cout << *p << endl;

» The following statement stores 55 in the memory location pointed to by p—that is, in Xx.
*p = 55;

22/2/2022 Dr/ Ayman Soliman 15

» Address of Operator (&)

» The ampersand, &, is called the address of operator

» The address of operator is a unary operator that returns the address of its operand

» Example:-
$include <iostream.h> # | "C:\Users\Dr Ayman Soliman\Decu
int main) L Lo
i Bx28f 140
double b=5.5; 2.0 _
cout<<b<<endl; /¢4 print th QI ress any key to continue
cout<<ebs<endl; f/ print th
cout<<*gh<<endl ; f/ print th
return 0:

Dr/ Ayman Soliman

» Example 1
> Int *p;

> Int num;

Main Memory
P 1200

mim 1a0o

\

» Num =78;

Main Memory

P 1200

mam 1800

2212712022

Dr/ Ayman Soliman

» Example 1 (cont.)

> P =#

Main Memory

p 1200

mim 1800

\

> *p =24,

Main Memory

P 1200

mim 1200

~

2212712022

Dr/ Ayman Soliman

» Example 1 (cont.)

d &p, p, and *p all have different meanings.

» &P means the address of p.
» p means the content of p.

» *p means the content of the memory location pointed to by p.

Dr/ Ayman Soliman

ﬁExample 2 \

> Int *p;
> Int x;
value
&p 1400
P 1400 P ??? (unknown)
*p does not exist (undefined)
= e &X 1750

\ X ??? (unknown) /

22/2/2022 Dr/ Ayman Soliman

ﬁ Example 2 (cont.)

» X =50:;

P 1400

X 1750

_

value
1400

??? (unknown)

does not exist (undefined)

1750
50

~

/

2212712022

Dr/ Ayman Soliman

()

ﬁ Example 2 (cont.)

> P =&KX;

P 1400

X 1750

_

value
1400
1750
50
1750
50

2212712022

Dr/ Ayman Soliman

ﬁ Example 2 (cont.)

> *p = 38;

P 1400

X 1750

_

value
1400
1750
38
1750
38

2212712022

Dr/ Ayman Soliman

» Pointers and Arrays

Finclude <igsSTCream.n

int arrav[5]1={1,3,5,7,9}:

cout<<"che array has address "CCarray<<endl; 4 mrints the arrav addross

coutb<<"element 0 has address "C<garray[0]<<endl; A/ prints element 0 address
cout<<"element 1 has address: "<<{garray[l]<<endl:; // prints el=ment 1 address
coutb<<"element 2 has address "C<garrayv[2]<<endl:; /4 prints element £ address
cout<<"element 3 haszs address: "«<<&arrayv[3]«<<endl; /S prints =lement 3 address
cout<<"element 4 has addres:s "e<garray[2]<<endl; A4 prints element 4 address

dereferencing an array returns =lement

Ax28f 1208
Bx28f 208
Bx28f 124
Bx28f 128
Bx28ff2c
Bx28f 38

] address
o address
} addre=ss

addre=ss
addre=ss
address

_'l

return

Prezs any to continue . . .

Dr/ Ayman Soliman

» Pointers and Arrays (cont.)

Finclude <io=stream.h>

; 1mplicity convert parameter array to *array

vold =2ize (double arrav(]) '/ volid si1zZe({int *array)

i array 15 treated a5 pointer herse, not a3 fixed array
cout<<sizeof (array)<<endl;

int main({)
i
double arrav[]={1,3,5,7,9,11,13,15,17,19};
cout<<sizeof (array)<<endl; S s12e of data type * array length

gize (arravy)
return O; | "C:\Users\Dr Ayrman Solimani\Documents\C
838

4

Prezs any key to continue . . .

Dr/ Ayman Soliman

ﬁ Pointers and Arrays (cont.)

» The C++ allows to perform integer addition or subtraction operations on pointers.

ptr

ptr+1
ptr + 2

ptr + 6

.

Memory Address

Ox 6ffe20
Ox 6ffe21
Ox 6ffe22
Ox 6ffe23
Ox 6ffe24
Ox 6ffe25
Ox 6ffe26

Memory Contents

—p Byte O:
- Byte 1:
- Byte 2:
=P Byte 3:
= Byte 4:
= Byte 5:

——> Byte 6:

0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111

*ptr
*(ptr + 1)
*(ptr + 2)

*(ptr + 6)

_/

22/2/2022

Dr/ Ayman Soliman

» Pointers and Arrays (cont.)
#include <iostream> 10 sddre F Bxbffeid

si a ce std; . - - -
i:t :gi:(';espa has address of Bxbffei?
1 B has address of @xb6ffeid
:hbg:: fgl:g?,ze,m,zxe}; nas address of Bxbtteib

cout << "value " << *(ptr) << " has address of "<<ptr <<'\n’';
cout << "value " << *(ptr+l)<< " has address of "<<ptr+l<<'\n’;
cout << "value " << *(ptr+2)<< " has address of "<<ptr+2<<’'\n’;
cout << "value " << *(ptr+3)<< " has address of "<<ptr+3<<'\n’;

return @;

} Memory Address Memory Contents
ptr Ox 6ffe30 — 10
ptr+1 Ox 6ffe32 — 20

Ox 6ffe34 —_— 30
Ox 6ffe36 —_— 40

22/2/2022 Dr/ Ayman Soliman @

» Pointers and Arrays (cont.)

#include <iostream> 1€ address of Bxbffeld
using namespace std; address of Bx6ffe2d
int main() __ _ I
{ address of Bxbffel8
int x[]={1@,28,3@€,48}; A address of Bxbffelc

int *ptr=x;

cout << "value " << *(ptr) << " has address of "<«ptr <<'\n’;
cout << "value " << *(ptr+l)<< " has address of "<<ptr+l<<'\n’;
cout << "value " << *(ptr+2)<< " has address of "<<ptr+2<<’'\n’;
cout << "value " << *(ptr+3)<< " has address of "<<ptr+3<<'\n’;

return @;

1

'~ Memory Address Memory Contents
Ox6ffe20 ' 10 The result of a pointer arithmetic expression
Ox 6ffe24 - 20 always multiplies the integer operand by the size
Ox 6ffe28 —_— 30 of the object being pointed to (scaling).
Ox 6ffe2c -_— 40

22/2/2022 Dr/ Ayman Soliman

222222222

